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a b s t r a c t

Bioanalytical method validation is a mandatory step to evaluate the ability of developed methods to
provide accurate results for their routine application in order to trust the critical decisions that will be
made with them. Even if several guidelines exist to help perform bioanalytical method validations, there
is still the need to clarify the meaning and interpretation of bioanalytical method validation criteria and
methodology. Yet, different interpretations can be made of the validation guidelines as well as for the
definitions of the validation criteria. This will lead to diverse experimental designs implemented to try
fulfilling these criteria. Finally, different decision methodologies can also be interpreted from these guide-
lines. Therefore, the risk that a validated bioanalytical method may be unfit for its future purpose will
depend on analysts personal interpretation of these guidelines. The objective of this review is thus to dis-
cuss and highlight several essential aspects of methods validation, not only restricted to chromatographic
ones but also to ligand binding assays owing to their increasing role in biopharmaceutical industries. The

points that will be reviewed are the common validation criteria, which are selectivity, standard curve,
trueness, precision, accuracy, limits of quantification and range, dilutional integrity and analyte stabil-
ity. Definitions, methodology, experimental design and decision criteria are reviewed. Two other points
closely connected to method validation are also examined: incurred sample reproducibility testing and
measurement uncertainty as they are highly linked to bioanalytical results reliability. Their additional
implementation is foreseen to strongly reduce the risk of having validated a bioanalytical method unfit

for its purpose.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

Analytical method validation is a mandatory step to evaluate the
bility of developed methods to provide accurate results for their
outine application. Indeed, without results of adequate quality or
eliability, the critical decisions that will be made during routine
pplication of the method will be untrustworthy leading to either
ver or under estimations of effect of new drugs, to inadequate
onitoring of patient statues, to erroneous conclusions of clini-

al studies and so on. For the last 15–20 years, method validation
as been the subject of many discussions. A general guidance on
ioanalytical method validation was given at the 1990 AAPS/FDA
orkshop [1]. In 2000, new workshops addressed the validation

f bioanalytical methods [2] as well as the special case of assays
edicated to macromolecules [3]. In 2001, the United States Food
nd Drug Administration (FDA) published its well known guid-
nce document on bioanalytical method validation [4]. Recently
n 2006, a new AAPS/FDA workshop was held in order to renew the
opic of bioanalytical method validation for both small molecules
nd macromolecules and lead to a consensus white paper [5]. For
nterested readers, a definitive history of bioanalytical method val-
dation and regulations can be found in [6].

Acknowledging the lack of guidance in Europe for the validation
f bioanalytical methods, the European Medicines Agency (EMA)
ublished a concept paper in December 2008 on this topic [7]. This
oncept paper relies evidently on the FDA guidance [4] which is
ow almost generally accepted by the biopharmaceutical indus-
ries as the gold standard method validation approach [8]. This
nitiative has led to an international motivation to globally discuss
nd harmonise bioanalytical method validation guidelines [9].

Nonetheless, even if a tentative to standardise globally bioan-
lytical method validation guidelines is in-progress, there is still
he need to clarify the meaning and interpretation of bioanalytical

ethod validation criteria and methodology.
Indeed, there are several risks inherent to bioanalytical methods

alidation. The first one resides in the different interpretations that
an be made of the validation guidelines such as the FDA guidance
4] or the recent FDA/AAPS white paper [5]. Various interpretations
an be made for the definitions of the validation criteria [10–12],
iverse experimental designs may be implemented to try fulfilling
hese criteria [11,13,14], and different decision methodologies can
lso be interpreted from these guidelines [14–16]. Therefore, the
isk that a validated bioanalytical method may be unfit for its future
se will depend on subjective interpretation of these guidelines.
dditionally, the general use of spiked biological matrix samples in
ethod validation studies may also increase the risk of having val-

dated an inadequate bioanalytical method for the analyses of real
n-study samples by neglecting at least the important inter-subject
ariability [17,18]. Finally, even with the best validation approach
pplied, results obtained from bioanalytical methods are prone to
ncertainties. In this context, knowing the measurement uncer-
ainty [19] related to each analytical result may also reduce the
isks of inadequate interpretations of these results when compar-

ng them to regulatory compliance limits or product specification
imits.

The objective of this review is thus to discuss and high-
ight several essential aspects of methods validation, not only
estricted to chromatographic ones but also to ligand binding
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856

assays (LBAs) owing to their increasing role in biopharmaceuti-
cal industries. The points that will be reviewed are the common
validation criteria, which are selectivity, standard curve, trueness,
precision, accuracy, limits of quantification and range, dilutional
integrity and analyte stability. Definitions, methodology, exper-
imental design and decision criteria are reviewed. Two other
points closely connected to method validation are also examined:
incurred sample reproducibility (ISR) testing and measurement
uncertainty as they are highly linked to bioanalytical results reli-
ability. Their additional implementation is foreseen to strongly
reduce the risk of having validated a bioanalytical method unfit for
its purpose.

2. Validation criteria

2.1. Selectivity

The terms “selectivity” and “specificity” are often used
interchangeably while their significances are different [20–26].
Selectivity is something that can be graded while specificity is an
absolute characteristic. Specificity can be considered as the ulti-
mate selectivity [20,23,27]. For this reasons, selectivity should be
preferred and is the recommended terminology.

Any bioanalytical method may be subject to interferences. It
is thus crucial to first document the selectivity of the analytical
method. Selectivity is the documented demonstration of the abil-
ity of the bioanalytical procedure to discriminate the analyte from
interfering components. It is usually defined as “the ability of the
bioanalytical method to measure unequivocally and to differentiate
the analyte(s) in the presence of components, which may be expected
to be present” [4]. Typically, these might include metabolites, impu-
rities, degradants, matrix components, etc. [4]. These interferences
may arise from the constituent of the biological matrix under study.
They may depend on characteristics of the individual under study,
be it an animal (age, sex, race, ethnicity, etc.) or a plant (devel-
opment stage, variety, nature of the soil, etc.), or they could also
depend on environmental exposure (climatic conditions such as
UV-light, temperature and relative humidity). In clinical studies,
co-medications can also be the causes of potential interferences.
For biotechnological products, the variability of the sources of raw
biomaterials is also the basis of interfering compounds. Types of
containers and preservatives may also be the sources of matrix
effect [28].

Demonstrating and documenting method selectivity can be
made through several approaches. The first one is by demonstrating
the absence of detector signal in a blank matrix [1,2,14,29–35]. The
actual FDA guidance for bioanalytical method validation requires
the use of at least six independent sources of matrix to demonstrate
methods selectivity [4]. It is however evident that all potential
sources of interferences arising from the diversity of the matrix
under study will not be present in the six sources studied. There-
fore different research groups have recommended to analyse from
10 to 20 different sources of blank matrices [14,30]. These blank

plasmas, if not naturally containing the potential interfering com-
pounds, should be spiked with these at their maximum likely
concentrations, e.g., drugs co administered in clinical studies, key
metabolites, etc. Comparison of the blank plasma signal with these
plasma spiked with the analyte of interest at the expected lower
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Fig. 1. Schematic for the post-column infusion analytical set-up.

imit of quantification (LLOQ) will allow to document methods
electivity.

For separative techniques, orthogonal modes of separation can
elp in documenting the selectivity of a procedure. Some exam-
les of orthogonal mode of separation are reversed phase HPLC
nd normal phase HPLC, chromatography and electrophoresis. If,
hen using two orthogonal modes of separation, it is shown that

he same number of peaks is present, it is a good start in document-
ng method selectivity. For methods implying UV detection, diode
rray detectors will allow to check the peak purity of key peaks
n the chromatogram obtained. Mass detectors will also allow to
valuate the peak purity, usual by analysing the mass spectra at the
eginning, apex and end of the chromatographic peak of interest.

Another approach to assess method selectivity is not to try
emonstrating the complete absence of interferences but to allow
small amount of interfering compounds. This approach requires

lso to analyse up to 20 different sources of matrices, spiked
ith supplemental potential interfering compounds as well as the

nalyte under study at its lower limit of quantification (LLOQ).
electivity is then demonstrating that, at the LLOQ, the trueness,
recision and thus accuracy of the results is still deemed accept-
ble [14,30]. Some authors also proposed that for chromatographic
ethods, the peak response of interfering compounds in blank
atrix at the retention time of the analyte should be at most 20%

f the response of the lower limit of quantification sample [36].
For hyphenated MS(-MS) techniques it is well known that

atrix effects is far from being negligible [18,37–40]. This effect
f the matrix on the MS signal is usually studied during the method
evelopment by using continuous post column infusion (see Fig. 1)
nd monitoring decreased or increased detector signal when inter-
ering compounds that elute from the column suppress or enhance
onisation, respectively [41–48]. This will for example orientate the
hoice of a sample preparation and clean-up procedure.

For method validation, a confirmation of this matrix effect could
e valuably added. Matuszweski et al. [18] proposed a methodology
o assess this matrix effect by measuring the signal of analyte in
hree different types of samples:

Type 1: matrix free standards.
Type 2: blank matrices of different sources extracted and spiked
with the analyte after extraction.
Type 3: same sources of blank matrices spiked before extraction.

Then they define matrix effect ME as the ratio of the response of
Type 2 samples over Type 1, recovery as the ratio of the response
of Type 3 over Type 2 and process efficiency as the ratio of the
detector signal of Type 3 samples over those of Type 1 signal
[18]. The methodology proposed by Matuszweski et al. [18] was
recently improved by adding a supplementary solution by Marchi
et al. [49] that allows to evaluate the extraction yield (EY) which
is particularly useful in case of multianalytes determination. In

this improvement, a fourth type of sample is analysed:
Type 4: matrix free standards submitted to extraction.

EY is then defined as the ratio of the response of Type 4 samples
ver Type 1 [49].
Biomedical Analysis 55 (2011) 848–858

Interestingly, Matuszweski et al. [18] proposed to investigate
this matrix effect on at least five different sources of matrices.
Finally, they insist that the combined effect of the sample matrix
and of the extraction recovery variability should be evaluated on
the quality of the assay results [18,50], that is results accuracy. An
alternative approach in assessing and measuring matrix effect may
be to compare the variability of slopes of standard curves prepared
in different sources of matrices [50] or to compare these exter-
nal standard curves slopes to standard addition performed on the
samples [39].

Similarly, for ligand binding assays (LBAs), lack of selectivity can
also induce enhancement or suppression of the signal (from bind-
ing proteins, endogenous analogs, concomitant drugs, similar class
of immunoglobulin, etc.). Assessment of matrix effect in such situa-
tions could also be performed by comparing assay results of matrix
samples with the drug analyte without the potential interfering
compounds and with their presence at various concentration levels
[51–53].

As can be seen, it is more and more essential to investigate the
selectivity of the assay under validation through the use of sev-
eral sources of matrices. This selectivity assessment should not
be limited to qualitative aspects (adequate resolution, absence of
interferences, absence of signal enhancement or suppression, etc.)
but also over the quantitative performance of the method and
mainly on the quality of the results generated by the assay.

2.2. Standard curve

The standard curve for a bioanalytical procedure is the exist-
ing relationship, within a specified range, between the response
(signal, e.g., area under the curve, peak height, absorption) and
the concentration (quantity) of the analyte in the sample. This
standard or calibration curve should be described preferably by a
simple monotonic (i.e. strictly increasing or decreasing) response
function that gives reliable measurements, i.e. accurate results as
discussed thereafter. The calibration standards used should gen-
erally be matrix-matched and analyte-matched, i.e. prepared by
spiking the same blank matrix as the one that will be encountered
during routine analyses with the analyte under study. The standard
curve is widely and frequently confounded with the linearity crite-
rion [10]. The linearity criterion refers to the relationship between
the quantity introduced and the quantity back-calculated from the
standard curve. This is different from a standard curve which refers
to the relationship between the instrumental response and the con-
centration.

2.2.1. Type of standard curve
To systematically force a linear function is not required, often

irrelevant and may lead to large errors in measured results (e.g., for
bioanalytical methods using LC–MS/MS or ligand binding assays)
where the linear range can be different from the working or dosing
range [54,55]. A significant source of bias and imprecision in ana-
lytical measurements can be caused by the inadequate choice of
the statistical model for the calibration curve [56]. The FDA guid-
ance on Bioanalytical Method Validation issued in May 2001 [4]
requires only that “The simplest model that adequately describes the
concentration–response relationship should be used.” Depending on
the analytical techniques being used several functions can be used
to obtain the standard curve.

The most common one is the ordinary least square (OLS) lin-
ear regression and the simplest one is the linear regression forced

through the origin using a single concentration level as shown in
Fig. 2. Applicability of this last one is not uncommon for bioanaly-
ses and performs relatively well by comparison to multiple-point
calibration in many instances [57]. OLS linear regression is com-
monly used with HPLC methods with UV, fluorescence and MS(-MS)
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etectors. It is usually the first guess and the starting point for the
election of the adequate standard curve. It works well in relatively
arrow range of concentration. Indeed, when the concentration
ange investigated by the bioanalytical method is increased, het-
roscedasticity is observed leading to inadequate fit of the OLS
inear regression and thus potential inaccurate analytical results
56,58,59]. An alternative is thus the more general weighted least
quare (WLS) linear regression that can be found useful [56,58,59].
he weight used describes the speed of the increase in signal vari-
nce when the concentration increases. Several possible common
eights are:

1
x0.5

,
1
x

,
1
x2

,
1

y0.5
,

1
y

,
1
y2

,

here x is the concentration and y is the detector response.
Alternatively, transformations of the signal and/or of the con-

entration may be found useful to obtain an adequate standard
urve [56]. The idea behind transformation is multiple. It can be in
rder to linearise the relationship between the signal and concen-
ration, to obtain residues with a distribution closer to a normal one
s well as reducing heteroscedasticity. It is first aimed at improv-
ng the fit of the mathematical function to the observed data.

ost common transformations are logarithmic or square root ones
60–64]. Transformations of the Box–Cox family are also potential
andidates [65–67]. Depending on the detector used or for large
oncentration range, quadratic standard curves y = ax2 + bx + c (see
ig. 2) that can be weighted or not, with or without transformations,
ay be used [56,64]. While combining transformations and weight-

ng is a solution, care should be made when such combination is
erformed as transformations and weighting may have opposite

ffect on variances. Therefore, residuals should be monitored in
rder to diagnostic any pervert effect of these combinations.

For LBAs, standard curves are generally non linear in their
arameters, and usually sigmoidal. The most used calibration
odel is the 4 parameters logistic (4-PL) model as illustrated in
Biomedical Analysis 55 (2011) 848–858 851

Fig. 2 [52,68,69]. A 5-PL model may also be useful when supple-
mental asymmetry in the relationship between concentration and
detector signal is observed [69,70]. For these models, weighting
may also be appropriate and are generally more complex than
those used for physico-chemical assays such as chromatographic
based assays. The variance relationship is usually a power of the
mean response: �y ∝ �� where �y is the standard deviation of the
responses y, � is the mean response and � a power to be estimated
from the data [68,71].

2.2.2. Design for the standard curve
The smallest and highest calibration standards of the standard

curve define the maximum concentration range over which the bio-
analytical method may be able to be validated as extrapolation is
rarely accepted [2,14,16,72,73]. They must thus be chosen accord-
ing to the specific aim of the method. Nonetheless, the validation
range can also be included inside the calibration range and it is the
validation standard concentration levels used that will define the
definitive concentration range over which the method may be val-
idated. For each model of standard curve there is an optimal design
to obtain the most accurate back-calculated results [74]. However,
an efficient rule of thumb is to place the standards at equidistance
from each others. It has been shown to provide close to optimal
design even for complex standard curves such as 4 parameters
logistic functions [74]. At least two replicates should be analysed
per concentration level, although it is essential that the same proce-
dure should be used for method validation as it will be done during
routine analyses [14,16,72]. It should be avoided to use in method
validation more repetitions and more concentration levels for the
standard curve than that will be used during routine application of
the method. Indeed, it has to be kept in mind that method validation
should mimic as much as possible the behaviour of the analytical
procedure and the accuracy of the results that will be generated
during its daily use. The idea of validation is also to confirm that
the adequate standard curve has been selected together with the
design used to generate it. Generally, it is advisable to use fewer
concentration levels with more replicates than vice versa [14,74].

D-optimal designs can be found when the mathematical model
used as standard curve is sufficiently known. For linear ones, the
design that will provide analytical results with the best precision
are two extreme calibration points [15,74]. For quadratic mod-
els, the D-optimal design is a calibration design with standards at
the extreme concentration and one standard at the middle of the
calibration concentration range [15,74]. The use of replicates for
calibration standards allows to improve the quality of the estimates
of the regression parameters. For LBAs, if it is assumed that 4-PL is
the correct model for the standard curves then 5–8 calibration con-
centration levels should be used, with two or three replicates per
levels to increase the precision of the estimators of the parameters
[57,68]. Anchor calibration points may also be useful to increase
the fit. For LBAs, the position of the calibration standards over the
plate is also crucial [68]. While complete randomisation of all types
of samples should be the ideal scenario [75], it is not practically
feasible and compromise designs could be performed [68].

Finally, practical aspects may also orientate the choice of the
number of calibration points to use: cost and availability of material
used to prepare the calibration curve (reference substances, bio-
matrices, etc.), minimising the number of runs or space allocated
to calibration standards to increase the throughput for incurred
samples and so on. However these criteria should not impair the
accuracy of the results generated by the assay.
2.2.3. Selecting the adequate standard curve
With all these possible standard curves at hand, how to select the

good one? It is essential that a standard curve must be evaluated on
its ability to provide accurate measurements. A significant source
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ig. 3. Schematic illustrating that a small systematic error or bias as shown in pane
b) illustrates a situation with greater systematic error but nonetheless each result

f bias and imprecision in analytical measurements can be caused
y the inadequate choice of the statistical model for the standard
urve. The statistical criteria such as coefficient of determination
R2”, lack-of-fit test or any other statistical test to demonstrated
uality of fit of a model are only informative and barely relevant
or the objective of the assay [10,11,14,54,59,68,76–78]. The gen-
ral idea to select the adequate standard curve is to demonstrate
hat this curve (and also the whole bioanalytical procedure) is able
o provide results of adequate quality or accuracy. This is achieved
y analysing independent validation standards prepared at several
oncentration levels spanning all or part of the calibration curve
ange. Then several methodologies exist. A first one is to compare
he bias and relative standard deviation at each validation standard
oncentration level to a priori acceptance limits with or without
heir respective confidence intervals [4,14,15,52,53]. Finally, sev-
ral authors [10,79–81] have introduced the use of the accuracy
rofile based on statistical tolerance intervals to decide if a calibra-
ion model will give results of sufficient quality. The models should
e retained or rejected based on the accuracy of the back-calculated
esults, which is the final purpose of any quantitative bioanalytical
ethod.

.3. Accuracy: trueness (bias) + precision

.3.1. Trueness (bias)
Trueness is related to systematic errors [10,79,82–84]. Indeed,

t is expressed as the distance from the average value of a series of
easurements (x̄i), i.e. the average of the spiked QC samples (or val-

dation standards) at a defined concentration level and a reference
alue �T, i.e. the concentration of the spike. This concept is mea-
ured by a bias, relative bias or recovery. Spiking blank matrices is
ne of the most popular method to assess trueness of a method.
owever other approaches are available:
Using a certified reference material.
Comparing results with a reference method.

When possible, these alternative approaches should also be used
o assess the trueness of the assay [11,12].
oes not guarantee that all results are included in a specified target. Whereas panel
uded within the target.

For the FDA Bioanalytical Method Validation document [4] true-
ness is mixed up with the concept of accuracy but this should
be avoided [10,13,82]. It is essential to distinguish the difference
between a result and an average value. The results of an analyti-
cal procedure are its very objective [10,79]. This average value only
gives the central location of the distribution of results of the same
true content, not the position of each individual result as shown in
Fig. 3. By extension, the bias, relative bias or recovery will locate
the center of the results distribution produced by the analytical
procedure relative to the accepted true value.

2.3.2. Precision
Precision (or sometimes called imprecision) is expressed as

standard deviation (s), variance (s2), relative standard deviation
(RSD) or coefficient of variation (CV). It measures the random error
linked to the analytical procedure, i.e. the dispersion of the results
around their average value [10,79,82,83].

The document of the FDA [4] distinguishes “within-run, intra-
batch precision or repeatability, which assesses precision during a
single analytical run”, and “between-run, inter-batch precision or
repeatability, which measures precision with time, and may involve
different analysts, equipment, reagents, and laboratories”. As can be
seen in this document the same word, namely repeatability, is used
twice for both component of variability which is certainly not free
of confusion for the analyst. Furthermore this document considers
at the same level the variability in a single laboratory or in different
laboratory.

In order to evaluate correctly the two components of variability
of an analytical procedure during the validation phase, the ANalysis
Of VAriance (ANOVA) by concentration level investigated is recom-
mended. As long as the design is balanced, i.e. the same numbers of
replicates per series for a concentration level, the least square esti-
mations of the variance components can be used. However when
this condition is not met the maximum likelihood estimates of
those components should be preferred [64].
It is important to note that the misapplications of known
variance formula are still widely used and can lead to dramatic
under or overestimation of the variance components [53,85,86].
For example, using the data of Table 1, when computing interme-
diate precision using the common variance formula neglecting the
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Table 1
Data used to illustrate the misuse of variance formulas for the estimation of inter-
mediate precision relative standard deviation (RSD).

Day 1 Day 2 Day 3

34.10 32.34 30.49
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address the normal sources of variability expected during the rou-
tine application of the assay. Failing to do so will artificially provide
an over optimistic estimation of precision and hence of results
accuracy.
34.75 31.35 29.38
33.21 32.33 30.39
33.18 33.50 29.97
34.25 32.45 31.12

act that the experiments were realised over several days give a
SD value of 5.2% while using the ANOVA model thus consider-

ng the series effect provides a RSD value of 6.0%. Here the misuse
f variance formulas underestimates the intermediate precision
hus giving a too optimistic vision of the method quantitative per-
ormances that is nonetheless influenced by external sources of
ariations included into the “days” effects. Another misuse would
e to choose from one day the repeatability variance, rather than
sing all the data through an ANOVA model to estimate this
epeatability variance.

As can be seen in the regulatory documents what makes the
ifference between within run repeatability and between run
epeatability is the concept of series or runs. These series or runs
re composed at least of different days with eventually different
perators and/or different equipments. A run or series is a period
uring which analyses are executed under repeatability conditions
hat remain constant. In this context, one can consider that repeata-
ility is a natural or intrinsic variation of the analytical procedure
hile maintaining constant all other modifiable analytical condi-

ions herein cited. The rational to select the different factors which
ill compose the runs/series is to mimic conditions that will be

ncountered during the routine use of the analytical procedure. It
s evident that the analytical procedure will not be used only one
ay, may be with more than one operator and over different equip-
ents. Thus, different factors representing the normal variability

f the procedure that will be used during the routinely performed
nalysis will be introduced in the validation protocol, leading to a
epresentative estimation of the variability of the analytical pro-
edure. Statistical experimental design can be defined in order to
ptimise the number of runs or series to account for the main effects
f these factors with a cost effective analysis time.

.3.3. Accuracy
In the document FDA Bioanalytical Method Validation [4], accu-

acy is defined as “. . .the closeness of mean test results obtained by
he method to the true value (concentration) of the analyte. (. . .)
he mean value should be within 15% of the actual value except at
LOQ, where it should not deviate by more than 20%. The deviation
f the mean from the true value serves as the measure of accu-
acy.” As already mentioned in the previous sections, this definition
orresponds to the analytical method trueness. For bioanalytical
ethods, earlier reviews have already stressed the problem of the

rucial difference between the definition of accuracy and trueness
10–12,14,79,87].

For most uses it does not matter whether a deviation from the
rue value is due to random error (lack of precision) or to system-
tic error (lack of trueness), as long as the total quantity of error
emains acceptable. Thus, the concept of total analytical error or
ccuracy which is the combination of random and systematic errors
s essential. Furthermore, every analyst wants to ensure that the
otal amount of error of the method will not affect the interpre-

ation of the test result and compromise the subsequent decision
29,53,54,79,16,88]. Decision based on the separate evaluation of
he trueness and precision criteria cannot achieve this [89]. Only
valuation of the accuracy of the results which takes into account
he total error concept, gives guarantees to both laboratories and
Biomedical Analysis 55 (2011) 848–858 853

regulatory agencies on the ability of the method to achieve its final
purpose. The computational details of total error is out of the scope
of the present paper, however the interested reader is referred to
the following documents that detail all the computational steps to
obtain total error: [64,80,81].

2.3.4. Experimental design for accuracy: trueness + precision
Accuracy and thus trueness and precision are estimated from

the analysis of Validation Standards (VS; sometimes these samples
are also called Quality Control – QC-samples, see e.g., [4]). These VS
samples should match the matrix of the real samples that will be
studied in routine application of the bioanalytical method. Indeed,
they have to mimic as close as possible the incurred samples. Ide-
ally, the blank matrix used to prepare the VS samples should be
different than the one that has been used to prepare the standard
curve, as this will be the case during the daily life of the procedure.

The extreme smallest and maximum VS levels should be
selected within or equal to the smallest and highest calibration
standard as it is generally not acceptable to perform extrapolation
[4,5]. Also at least a third VS level must be used, near the middle of
the validation range [4,5]. Nonetheless, more VS levels can valuably
be added near the smallest VS levels if the validity of the bioana-
lytical procedure at the expected LLOQ is felt unsure. For instance
the FDA guide [4] proposes to use 4 VS levels to validate analyt-
ical methods: one at the expected LLOQ, one at three times this
expected LLOQ, a middle one and a maximum one. For LBA assays
at least five concentrations levels are recommended [52,53].

The FDA guide as well as the recent white paper requests
that at least five replicates should be analysed at each VS level
[4,5]. However, no recommendation is proposed for the number
of runs to perform to assess inter-run precision. A minimum of
three runs should be used in order to compute an almost mean-
ingful between-run standard deviation. However, many authors
suggested increasing the number of different runs. Some proposed
8 runs [14] others at least 5 runs [32,52] or 6 runs [53]. The
NCCLS proposed a design involving 2 repetitions for each con-
centration level during 20 runs performed during 20 days [90].
Two replicates is also the minimum proposed for LBA [53]. It has
to be reminded that each run can be or should be performed
by different analyst, equipments or reagents when relevant, with
different sources of blank matrices and during different days to
Fig. 4. Example of precision profile, showing the evolution of the bioanalytical
method precision with respect to analyte concentration. The lower limit of quantifi-
cation (LLOQ) is for example the smallest concentration with a RSD not exceeding
15%.



854 E. Rozet et al. / Journal of Pharmaceutical and

Fig. 5. Schematic accuracy profile obtained from a method validation. The plain
line represents the relative bias or trueness. The dashed lines represent total error
or accuracy. The dotted curves are the acceptance limit set at ±30%. The lower and
upper limit of quantification (LLOQ and ULOQ) are the smallest and highest concen-
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3. Incurred sample reproducibility
ration levels where total error and thus results accuracy does not exceed 30% error,
espectively.

.4. LOQ and range

The FDA Bioanalytical Method Validation document defines the
ower limit of quantification and the upper limit of quantification

hich are the lowest (highest) amount of an analyte in a sample
hat can be quantitatively determined with precision and accuracy
4]. Several approaches exist in order to estimate the lower limit of
uantification (LLOQ).

A first approach is based on the well known signal-to-noise (S/N)
atio approach. A 10:1 S/N is considered to be sufficient to dis-
riminate the analyte from the background noise [91]. The other
pproaches are based on the “Standard Deviation of the Response
nd the Slope”. The computation for LLOQ is:

LOQ = 10�

S

here � is the standard deviation of the response and S = the slope
f the calibration curve.

Another approach to estimate the LLOQ is to plot the RSD versus
oncentrations close to the expected LLOQ. As shown in Fig. 4, the
LOQ is then the concentration for which the RSD corresponds to a
aximum target RSD value [92].
These methods of estimating the LLOQ are well known for their

mportant pitfalls [10,12,93,94]. None of these approaches fulfill
he definition of the LLOQ. Indeed, they do not estimate the LLOQ
y assessing the acceptability of trueness and precision or accu-
acy at this level. Therefore, if using such approaches to define the
LOQ, further experiments should be performed to demonstrate
hat accuracy of the results at this level is acceptable, or at least
howing that precision and trueness of the method at this level are
dequate.

A last approach which allows an adequate estimation of the
LOQ as well as of the upper limit of quantification (ULOQ) is
he use of the accuracy profile approach as illustrated in Fig. 5
10,74,79,88,95,96]. Indeed this methodology demonstrates that
he total error of the results is known and acceptable at these
oncentration levels, i.e. both an acceptable level of systematic
nd random errors. The quantification range is “the range of
oncentration, including ULOQ and LLOQ, that can be reliably and
eproducibly quantified with accuracy and precision through the use of

concentration-response relationship” [4]. Thus, the quantification

ange is deducted from all the experiments realised during method
alidation.
Biomedical Analysis 55 (2011) 848–858

2.5. Dilutional integrity

When the analyte is present in the sample at concentrations
above the ULOQ, the samples should be diluted in order to bring
back the sample concentration within the valid concentration
range. Several dilution procedures and factors should therefore be
validated [4,5,53]. It should be demonstrated that this additional
sample manipulation does not impair the trueness and precision of
the method and thus the accuracy of the results obtained in such a
way. To demonstrate this, blank matrix samples are spiked at con-
centration above the ULOQ and then submitted to the dilutional
procedure. Then, the same methodology to evaluate methods pre-
cision and trueness or results accuracy should be used to assess the
dilutional integrity.

2.6. Stability

Assessment of analyte stability is a prerequisite to obtain a
reliable bioanalytical method. It is thus essential to evaluate ana-
lyte stability during the method validation step at least. The FDA
guide on bioanalytical method validation [4] as well as the recent
AAPS/FDA white paper [5] require evaluating analyte stability at
different stages. They include the evaluation of the analyte sta-
bility in the biological matrix through several freeze–thaw cycles,
bench-top stability (i.e. under the conditions of sample prepara-
tion), long term stability at for example −20 ◦C or −70 ◦C (i.e. during
storage conditions of the samples) and stability of samples on the
auto-sampler.

Generally, stability should be evaluated at least at two con-
centration levels, using blank biological matrix matched samples
spiked at a low and high concentration level [4,5,53]. It should
be assessed in each matrix and species in which the analyte will
be quantified. Bench-top stability should be representative of the
conditions over which study samples will be prepared, for instance
at room temperature and/or refrigerator temperature when rel-
evant. Freeze–thaw stability is generally evaluated during three
freeze–thaw cycles and should always mimic the way samples will
be handled during daily application of the bioanalytical method.

Stability is evaluated by using freshly prepared calibration stan-
dards to compute recovery either from the nominal concentration
of the samples assessed at the beginning of the stability study or
by using quality control samples prepared at each time point of
analysis at the same nominal concentration level as the stability
samples [97]. At each time point, analysis of at least six repli-
cates for both the stability samples and the VS (or QC) ones are
generally recommended [97]. Common rule to accept the stabil-
ity of analytes is to monitor the ratios between stability samples
and VS (or QC) samples and to verify that two thirds of individ-
ual stability samples ratio falls inside specified acceptance limits
such as 80–120% or 85–115% [4,5,53]. Alternatively the mean of
the recoveries together with their confidence interval should be
included within the acceptance limits. Finally, another approach
modelling the analyte instability through a simple linear regression
of the recoveries versus storage times together with its confi-
dence interval has been proposed that is then compared to the
pre-specified acceptance limits as illustrated in Fig. 6 [97]. These
last two approaches are statistical equivalence tests that provide
an adequate framework for stability assessment by efficiently con-
trolling the risk of falsely concluding stability [97].
Although the analysis of incurred samples (or real study sam-
ples) is not formally required in the FDA guidance of bioanalytical
method validation [4], FDA requires more and more to assess
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Fig. 6. Schematic illustrating a stability profile. The continuous line is the linear
regression model showing the evolution of the stability of the analyte. The two
dashed lines are the two-sided 95% confidence interval and the two dotted lines
are the acceptance limits given at 80 and 120 �g/ml. The open circles represent
the calculated concentrations obtained from the stability samples. On this example,
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eliminated all sources of systematic influences, the uncertainty
can be expressed as a standard deviation. While suppressing all
tability is acceptable up to around 12 months, where the lower confidence interval
rosses the lower acceptance limit.

he variability of bioanalytical methods in real situations due
o high discrepancies observed during audits or reviews [98].
his paramount variability observed when re-analysing incurred
amples during different runs impairs the validity status of the bio-
nalytical methods. Therefore, recent discussions and white papers
romote the inclusion of incurred sample reproducibility (ISR) dur-

ng the bioanalytical method validation [5,69,97]. Indeed one of
he limitations of bioanalytical methods validation step is that
hey are usually performed using spiked samples that only more
r less mimic the real in-study samples. Therefore, these spiked
amples may not effectively provide adequate estimates of the bio-
nalytical method quantitative performances such as precision and
rueness obtained with study or incurred samples. The aim of ISR
esting is to demonstrate that the bioanalytical method will pro-
uce consistent results from study samples when re-analysed on a
eparate occasion. The actual common acceptance criteria adopted
y biopharmaceutical laboratories is the 4–6–� rule, with � = ±20%
cceptance limits for small molecules and � = ±30% for large ones
99,100]. This means that two-thirds of the re-analysed incurred
amples must lie within ±20% (or ±30%) of the original result.

To test ISR, it is recommended to select re-tested samples ran-
omly in order to cover the valid range of concentrations and
rom sufficient different subjects to include the most inter-subject

atrix variability [99–101]. Rather than defining a fixed percent-
ge of samples of a study to re-analyse, the sample size should be
efined in order to reduce the risk to abusively reject ISR testing
nd to increase the probability to accept adequately ISR testing.
imulations, such as those proposed by Hoffman [100] could be
sed to achieve this. For instance they showed that a sample size
f 40 incurred samples allowed to reject 90% of times truly non
eproducible methods. For such a sample size the risk to reject
ruly reproducible method with true RSD of 10% is about 1% [100].
ncurred samples should be analysed over as many analytical runs
s practicable within a laboratory in order to reduce the risk of
rroneously failing ISR testing [100].

While the 4–6–� rule is a non statistical decision rule with
ery poor performances [102], other rigorous statistical method-
logies are available. These approaches strictly control the risk of

ncorrectly accepting truly non-reproducible bioanalytical meth-
ds. They are the tolerance intervals and the probability approaches
81,100,103–105].
Biomedical Analysis 55 (2011) 848–858 855

The tolerance interval approach will define a region where the
differences “repeated sample result minus original result” will fall
with a probability ˇ. This probability could be set at ˇ = 66.7% in the
case of ISR testing [100]. This interval is then compared to accep-
tance limits. Hoffman [100] has proposed an acceptance limits of
21.2% (see [100] for rational). Details of statistical computations
for tolerance interval may be found in: [64,81,100,104]. The prob-
ability approach estimates directly the probability to obtain the
differences “repeated sample result minus original result” within
pre-defined acceptance limits and compare it to a minimum qual-
ity level, for instance 66.7%. Here also the interested reader is
referred to the following references for computational details:
[100,104,105].

4. Measurement uncertainty

Uncertainty defined by the ISO Guide on Uncertainty of Mea-
surement (GUM) [19,106] is “a parameter associated with the
result of a measurement that characterises the dispersion of the
values that could reasonably be attributed to the measurand”.
This parameter is usually a standard deviation, a given multi-
ple of it, or the width of a confidence interval. This uncertainty
expanded by a factor, 2 for e.g., is interpreted as an interval in
which the true value of the result of a measurement resides with
a defined probability. For instance, when the coverage factor is 2,
there is about 95% probability that the true measurement result is
within this interval, assuming a normal distribution of the results.
More detailed explanations about measurement uncertainty can
be found in various guides or articles [107–110]. In few lines, the
initial idea is to perform a bottom-up approach by determining
all the individual sources of uncertainty linked to the final results,
realising an uncertainty budget and combining all these uncer-
tainties through the law of error propagation. Each uncertainty
contribution is expressed as a standard deviation either based on
experimental data (type A evaluation) or based on scientific judg-
ment using a priori selected distributions (type B evaluation). This
bottom-up procedure has the advantage to define and measure
all sources of uncertainty and allows the improvements of the
analytical procedure by reducing the most important sources of
uncertainties. It also allows a detailed understanding of the ana-
lytical process involved. However, direct application of the GUM
in bioanalytical laboratories is found tedious and laborious and
opposed to the competitiveness required for bioanalytical labo-
ratories to survive. Therefore other approaches, called top-down
approaches have been proposed [107,111–113]. They use exper-
iments coming from various studies such as trueness, precision,
validation, robustness or inter-laboratories ones, or even com-
binations of them. These top-down approaches allow providing
measurement uncertainty estimates to bioanalytical laboratories
in a cost-effective manner. If the bioanalytical method validation is
well designed, including several operators, performed on different
equipments and on different days of analyses, then the estimation
of measurement uncertainty should be adequate. Some authors
have further demonstrated the mathematical link between sta-
tistical tolerance intervals used in the accuracy profile validation
methodology and measurement uncertainty [95]. It should also
be noted that a prerequisite from the GUM is that the analyti-
cal method should be totally free of systematic error, and if it
is not the case results should be corrected for it [19]. This can
thus orientate the selection of the calibration curve by choos-
ing the one that provides no bias or the least bias. Then, having
sources of systematic errors is not always possible or pragmatic,
then method bias should be included into the uncertainty budget
[107,114–116].
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Measurement uncertainty defines thus a region around a routine
esult obtained from an incurred sample where it is highly probable
o observe the real unknown true result. Measurement uncertainty

ay have a good place in the daily application of bioanalytical
ethods by assessing whether results obtained from incurred sam-

les are compliant with specification limits, or legal thresholds
109,117–120]. However measurement uncertainty is rarely used
n practice although for laboratories aiming at achieving ISO 17025
121] or ISO 15189 [122] accreditations, it is a mandatory step.

. Conclusion

Bioanalytical methods must be validated to objectively demon-
trate their fitness for their intended use. This review aimed at
eporting and clarifying the interpretations and methodologies
mployed to assess the main validation criteria for bioanalytical
ethods that are selectivity, standard curve, trueness, precision,

ccuracy, limits of quantification and range, dilutional integrity and
nalyte stability. Two other equally important elements to reduce
he risks to validate an unfit bioanalytical method were also dis-
ussed. The first one, incurred sample reproducibility testing, is
ecommended to assess the consistency of assays over real rou-
ine samples and therefore increase the reliability of the analytical
esults. The second one, measurement uncertainty, reminds ana-
ysts that an analytical result is only an estimation of the real
oncentration of a sample. Therefore measurement uncertainty
uantifies the doubt about a result in order to help the analyst to
ake reliable decisions, knowing the risks of false compliance and

on-compliance.
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